33 #include <llvm/ExecutionEngine/GenericValue.h>
44 return entry_count > 100000;
53 std::vector<int64_t>
make_key(
const int64_t* buff,
54 const size_t entry_count,
55 const size_t key_count) {
56 std::vector<int64_t> key;
58 for (
size_t i = 0; i < key_count; ++i) {
59 key.push_back(buff[off]);
66 const size_t dst_entry_count,
67 const int64_t* src_buff,
68 const size_t src_entry_idx,
69 const size_t src_entry_count,
74 for (
size_t i = 0, dst_slot_off = 0; i < slot_count;
75 ++i, dst_slot_off += dst_entry_count) {
76 dst_entry[dst_slot_off] =
80 const auto row_ptr = src_buff +
get_row_qw_count(query_mem_desc) * src_entry_idx;
82 for (
size_t i = 0; i < slot_count; ++i) {
83 dst_entry[i] = row_ptr[slot_off_quad + i];
90 for (
size_t i = 0; i < key_count; ++i) {
97 for (
size_t i = 0; i < key_count; ++i) {
103 const size_t comp_sz,
104 const size_t index = 0) {
105 int64_t ret = std::numeric_limits<int64_t>::min();
108 ret = group_by_buffer[index];
112 const int16_t* buffer_ptr =
reinterpret_cast<const int16_t*
>(group_by_buffer);
113 ret = buffer_ptr[index];
117 const int32_t* buffer_ptr =
reinterpret_cast<const int32_t*
>(group_by_buffer);
118 ret = buffer_ptr[index];
122 const int64_t* buffer_ptr =
reinterpret_cast<const int64_t*
>(group_by_buffer);
123 ret = buffer_ptr[index];
135 const int8_t* that_buff,
136 const int32_t start_entry_index,
137 const int32_t end_entry_index,
138 const int32_t that_entry_count,
139 const void* this_qmd,
140 const void* that_qmd,
141 const void* serialized_varlen_buffer) {
144 err = reduction_code.
func_ptr(this_buff,
151 serialized_varlen_buffer);
168 throw std::runtime_error(
"Multiple distinct values encountered");
171 throw std::runtime_error(
172 "Query execution has interrupted during result set reduction");
174 throw std::runtime_error(
175 "Query execution has exceeded the time limit or was interrupted during result "
183 const size_t key_count,
184 const size_t key_width) {
187 auto key_ptr_i32 =
reinterpret_cast<int32_t*
>(key_ptr);
192 auto key_ptr_i64 =
reinterpret_cast<int64_t*
>(key_ptr);
204 const std::vector<std::string>& serialized_varlen_buffer,
206 const size_t executor_id)
const {
220 CHECK_GE(entry_count, that_entry_count);
223 CHECK_EQ(entry_count, that_entry_count);
225 auto this_buff =
buff_;
227 auto that_buff = that.
buff_;
231 if (!serialized_varlen_buffer.empty()) {
232 throw std::runtime_error(
233 "Projection of variable length targets with baseline hash group by is not yet "
234 "supported in Distributed mode");
238 std::vector<std::future<void>> reduction_threads;
239 for (
size_t thread_idx = 0; thread_idx < thread_count; ++thread_idx) {
240 const auto thread_entry_count =
241 (that_entry_count + thread_count - 1) / thread_count;
242 const auto start_index = thread_idx * thread_entry_count;
243 const auto end_index =
244 std::min(start_index + thread_entry_count, that_entry_count);
268 for (
size_t entry_idx = start_index; entry_idx < end_index; ++entry_idx) {
270 this_buff, that_buff, entry_idx, that_entry_count, that);
275 for (
auto& reduction_thread : reduction_threads) {
276 reduction_thread.wait();
278 for (
auto& reduction_thread : reduction_threads) {
279 reduction_thread.get();
294 for (
size_t i = 0; i < that_entry_count; ++i) {
303 std::vector<std::future<void>> reduction_threads;
304 for (
size_t thread_idx = 0; thread_idx < thread_count; ++thread_idx) {
305 const auto thread_entry_count = (entry_count + thread_count - 1) / thread_count;
306 const auto start_index = thread_idx * thread_entry_count;
307 const auto end_index = std::min(start_index + thread_entry_count, entry_count);
308 if (query_mem_desc_.didOutputColumnar()) {
316 &serialized_varlen_buffer,
318 reduceEntriesNoCollisionsColWise(
324 serialized_varlen_buffer,
338 &serialized_varlen_buffer] {
339 CHECK(reduction_code.ir_reduce_loop);
349 &that.query_mem_desc_,
350 &serialized_varlen_buffer);
354 for (
auto& reduction_thread : reduction_threads) {
355 reduction_thread.wait();
357 for (
auto& reduction_thread : reduction_threads) {
358 reduction_thread.get();
361 if (query_mem_desc_.didOutputColumnar()) {
362 reduceEntriesNoCollisionsColWise(this_buff,
366 query_mem_desc_.getEntryCount(),
367 serialized_varlen_buffer,
370 CHECK(reduction_code.ir_reduce_loop);
379 &that.query_mem_desc_,
380 &serialized_varlen_buffer);
390 throw std::runtime_error(
391 "Query execution has exceeded the time limit or was interrupted during result "
399 throw std::runtime_error(
400 "Query execution has exceeded the time limit or was interrupted during result "
409 const int8_t* that_buff,
411 const size_t start_index,
412 const size_t end_index,
413 const std::vector<std::string>& serialized_varlen_buffer,
414 const size_t executor_id)
const {
417 CHECK(serialized_varlen_buffer.empty());
425 for (
size_t target_idx = 0; target_idx <
targets_.size(); ++target_idx) {
426 const auto& agg_info =
targets_[target_idx];
427 const auto& slots_for_col = col_slot_context.getSlotsForCol(target_idx);
429 bool two_slot_target{
false};
430 if (agg_info.is_agg &&
431 (agg_info.agg_kind ==
kAVG ||
432 (agg_info.agg_kind ==
kSAMPLE && agg_info.sql_type.is_varlen()))) {
436 two_slot_target =
true;
439 executor->checkNonKernelTimeInterrupted())) {
440 throw std::runtime_error(
441 "Query execution was interrupted during result set reduction");
446 for (
size_t target_slot_idx = slots_for_col.front();
447 target_slot_idx < slots_for_col.back() + 1;
448 target_slot_idx += 2) {
453 for (
size_t entry_idx = start_index; entry_idx < end_index; ++entry_idx) {
467 int8_t* this_ptr2{
nullptr};
468 const int8_t* that_ptr2{
nullptr};
486 slots_for_col.front(),
487 serialized_varlen_buffer);
490 this_crt_col_ptr = this_next_col_ptr;
491 that_crt_col_ptr = that_next_col_ptr;
508 const int8_t* that_buff)
const {
513 const auto column_offset_bytes =
515 auto lhs_key_ptr = this_buff + column_offset_bytes;
516 auto rhs_key_ptr = that_buff + column_offset_bytes;
519 *(
reinterpret_cast<int64_t*
>(lhs_key_ptr) + entry_idx) =
520 *(
reinterpret_cast<const int64_t*
>(rhs_key_ptr) + entry_idx);
523 *(
reinterpret_cast<int32_t*
>(lhs_key_ptr) + entry_idx) =
524 *(
reinterpret_cast<const int32_t*
>(rhs_key_ptr) + entry_idx);
527 *(
reinterpret_cast<int16_t*
>(lhs_key_ptr) + entry_idx) =
528 *(
reinterpret_cast<const int16_t*
>(rhs_key_ptr) + entry_idx);
531 *(
reinterpret_cast<int8_t*
>(lhs_key_ptr) + entry_idx) =
532 *(
reinterpret_cast<const int8_t*
>(rhs_key_ptr) + entry_idx);
544 const std::vector<std::string>& serialized_varlen_buffer)
const {
545 if (serialized_varlen_buffer.empty()) {
555 for (
size_t i = 0; i < entry_count; ++i) {
561 auto rowwise_targets_ptr =
563 size_t target_slot_idx = 0;
564 for (
size_t target_logical_idx = 0; target_logical_idx <
targets_.size();
565 ++target_logical_idx) {
566 const auto& target_info =
targets_[target_logical_idx];
567 if (target_info.sql_type.is_varlen() && target_info.is_agg) {
569 auto ptr1 = rowwise_targets_ptr;
570 auto slot_idx = target_slot_idx;
572 auto offset = *
reinterpret_cast<const int64_t*
>(ptr1);
574 const auto& elem_ti = target_info.sql_type.get_elem_type();
575 size_t length_to_elems =
576 target_info.sql_type.is_string() || target_info.sql_type.is_geometry()
578 : elem_ti.get_size();
579 if (target_info.sql_type.is_geometry()) {
580 for (
int j = 0; j < target_info.sql_type.get_physical_coord_cols(); j++) {
587 CHECK_LT(static_cast<size_t>(offset), serialized_varlen_buffer.size());
588 const auto& varlen_bytes_str = serialized_varlen_buffer[offset++];
590 reinterpret_cast<const int8_t*
>(varlen_bytes_str.c_str());
592 *
reinterpret_cast<int64_t*
>(ptr1) = reinterpret_cast<const int64_t>(str_ptr);
594 *
reinterpret_cast<int64_t*
>(ptr2) =
595 static_cast<int64_t>(varlen_bytes_str.size() / length_to_elems);
598 CHECK_LT(static_cast<size_t>(offset), serialized_varlen_buffer.size());
599 const auto& varlen_bytes_str = serialized_varlen_buffer[offset];
600 const auto str_ptr =
reinterpret_cast<const int8_t*
>(varlen_bytes_str.c_str());
602 *
reinterpret_cast<int64_t*
>(ptr1) = reinterpret_cast<const int64_t>(str_ptr);
604 *
reinterpret_cast<int64_t*
>(ptr2) =
605 static_cast<int64_t>(varlen_bytes_str.size() / length_to_elems);
610 rowwise_targets_ptr, target_info, target_slot_idx,
query_mem_desc_,
false);
611 target_slot_idx =
advance_slot(target_slot_idx, target_info,
false);
621 #define mapd_cas(address, compare, val) \
622 InterlockedCompareExchange(reinterpret_cast<volatile long*>(address), \
623 static_cast<long>(val), \
624 static_cast<long>(compare))
626 #define mapd_cas(address, compare, val) __sync_val_compare_and_swap(address, compare, val)
632 const uint32_t key_qw_count,
633 const size_t entry_count) {
637 for (
size_t i = 0; i < key_qw_count; ++i) {
638 groups_buffer[off] = key[i];
641 return {&groups_buffer[off],
true};
644 for (
size_t i = 0; i < key_qw_count; ++i) {
645 if (groups_buffer[off] != key[i]) {
646 return {
nullptr,
true};
650 return {&groups_buffer[off],
false};
657 int64_t* groups_buffer,
658 const uint32_t groups_buffer_entry_count,
660 const uint32_t key_qw_count) {
661 uint32_t h =
key_hash(key, key_qw_count,
sizeof(int64_t)) % groups_buffer_entry_count;
663 groups_buffer, h, key, key_qw_count, groups_buffer_entry_count);
664 if (matching_gvi.first) {
667 uint32_t h_probe = (h + 1) % groups_buffer_entry_count;
668 while (h_probe != h) {
670 groups_buffer, h_probe, key, key_qw_count, groups_buffer_entry_count);
671 if (matching_gvi.first) {
674 h_probe = (h_probe + 1) % groups_buffer_entry_count;
676 return {
nullptr,
true};
680 #define cas_cst(ptr, expected, desired) \
681 (InterlockedCompareExchangePointer(reinterpret_cast<void* volatile*>(ptr), \
682 reinterpret_cast<void*>(&desired), \
683 expected) == expected)
684 #define store_cst(ptr, val) \
685 InterlockedExchangePointer(reinterpret_cast<void* volatile*>(ptr), \
686 reinterpret_cast<void*>(val))
687 #define load_cst(ptr) \
688 InterlockedCompareExchange(reinterpret_cast<volatile long*>(ptr), 0, 0)
690 #define cas_cst(ptr, expected, desired) \
691 __atomic_compare_exchange_n( \
692 ptr, expected, desired, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)
693 #define store_cst(ptr, val) __atomic_store_n(ptr, val, __ATOMIC_SEQ_CST)
694 #define load_cst(ptr) __atomic_load_n(ptr, __ATOMIC_SEQ_CST)
697 template <
typename T =
int64_t>
699 int64_t* groups_buffer,
702 const uint32_t key_count,
704 const int64_t* that_buff_i64,
705 const size_t that_entry_idx,
706 const size_t that_entry_count,
707 const uint32_t row_size_quad) {
708 auto off = h * row_size_quad;
709 T empty_key = get_empty_key<T>();
710 T write_pending = get_empty_key<T>() - 1;
711 auto row_ptr =
reinterpret_cast<T*
>(groups_buffer + off);
713 const bool success =
cas_cst(row_ptr, &empty_key, write_pending);
715 fill_slots(groups_buffer + off + slot_off_quad,
722 memcpy(row_ptr + 1, key + 1, (key_count - 1) *
sizeof(
T));
725 return {groups_buffer + off + slot_off_quad,
true};
727 while (
load_cst(row_ptr) == write_pending) {
731 for (
size_t i = 0; i < key_count; ++i) {
732 if (
load_cst(row_ptr + i) != key[i]) {
733 return {
nullptr,
true};
736 return {groups_buffer + off + slot_off_quad,
false};
744 int64_t* groups_buffer,
747 const uint32_t key_count,
748 const size_t key_width,
750 const int64_t* that_buff_i64,
751 const size_t that_entry_idx,
752 const size_t that_entry_count,
753 const uint32_t row_size_quad) {
758 reinterpret_cast<const int32_t*>(key),
777 return {
nullptr,
true};
784 int64_t* groups_buffer,
785 const uint32_t groups_buffer_entry_count,
787 const uint32_t key_count,
788 const size_t key_width,
790 const int64_t* that_buff_i64,
791 const size_t that_entry_idx,
792 const size_t that_entry_count,
793 const uint32_t row_size_quad) {
794 uint32_t h =
key_hash(key, key_count, key_width) % groups_buffer_entry_count;
805 if (matching_gvi.first) {
808 uint32_t h_probe = (h + 1) % groups_buffer_entry_count;
809 while (h_probe != h) {
820 if (matching_gvi.first) {
823 h_probe = (h_probe + 1) % groups_buffer_entry_count;
825 return {
nullptr,
true};
831 const int8_t* that_buff,
832 const size_t that_entry_idx,
833 const size_t that_entry_count,
848 auto this_buff_i64 =
reinterpret_cast<int64_t*
>(this_buff);
849 auto that_buff_i64 =
reinterpret_cast<const int64_t*
>(that_buff);
850 const auto key =
make_key(&that_buff_i64[key_off], that_entry_count, key_count);
853 CHECK(this_entry_slots);
864 this_entry_slots, that_buff_i64, that_entry_idx, that_entry_count, that);
868 const int64_t* that_buff,
869 const size_t that_entry_idx,
870 const size_t that_entry_count,
875 size_t init_agg_val_idx = 0;
876 for (
size_t target_logical_idx = 0; target_logical_idx <
targets_.size();
877 ++target_logical_idx) {
878 const auto& target_info =
targets_[target_logical_idx];
880 that_entry_idx, init_agg_val_idx, key_count, that_entry_count);
893 init_agg_val_idx =
advance_slot(init_agg_val_idx, target_info,
false);
896 init_agg_val_idx =
advance_slot(init_agg_val_idx, target_info,
false);
904 const size_t this_slot,
905 const int64_t* that_buff,
906 const size_t that_entry_count,
907 const size_t that_slot,
909 const size_t target_logical_idx,
910 const size_t target_slot_idx,
911 const size_t init_agg_val_idx,
914 int8_t* this_ptr2{
nullptr};
915 const int8_t* that_ptr2{
nullptr};
920 const auto that_count_off = that_entry_count;
921 this_ptr2 =
reinterpret_cast<int8_t*
>(&this_buff[this_slot + this_count_off]);
922 that_ptr2 =
reinterpret_cast<const int8_t*
>(&that_buff[that_slot + that_count_off]);
924 reduceOneSlot(reinterpret_cast<int8_t*>(&this_buff[this_slot]),
926 reinterpret_cast<const int8_t*>(&that_buff[that_slot]),
940 template <
class KeyType>
942 const size_t new_entry_count)
const {
945 auto new_buff_i64 =
reinterpret_cast<int64_t*
>(new_buff);
949 const auto src_buff =
reinterpret_cast<const int64_t*
>(
buff_);
955 std::vector<std::future<void>> move_threads;
957 for (
size_t thread_idx = 0; thread_idx < thread_count; ++thread_idx) {
958 const auto thread_entry_count =
960 const auto start_index = thread_idx * thread_entry_count;
961 const auto end_index =
974 for (
size_t entry_idx = start_index; entry_idx < end_index; ++entry_idx) {
975 moveOneEntryToBuffer<KeyType>(entry_idx,
985 for (
auto& move_thread : move_threads) {
988 for (
auto& move_thread : move_threads) {
993 moveOneEntryToBuffer<KeyType>(entry_idx,
1004 template <
class KeyType>
1006 int64_t* new_buff_i64,
1007 const size_t new_entry_count,
1008 const size_t key_count,
1009 const size_t row_qw_count,
1010 const int64_t* src_buff,
1011 const size_t key_byte_width)
const {
1012 const auto key_off =
1015 : row_qw_count * entry_index;
1016 const auto key_ptr =
reinterpret_cast<const KeyType*
>(&src_buff[key_off]);
1017 if (*key_ptr == get_empty_key<KeyType>()) {
1020 int64_t* new_entries_ptr{
nullptr};
1034 CHECK(new_entries_ptr);
1044 if (query_mem_desc_.didOutputColumnar()) {
1045 storage_->initializeColWise();
1047 storage_->initializeRowWise();
1055 const size_t executor_id) {
1056 CHECK(!result_sets.empty());
1057 auto result_rs = result_sets.front();
1058 CHECK(result_rs->storage_);
1059 auto& first_result = *result_rs->storage_;
1060 auto result = &first_result;
1061 const auto row_set_mem_owner = result_rs->row_set_mem_owner_;
1062 for (
const auto result_set : result_sets) {
1063 CHECK_EQ(row_set_mem_owner, result_set->row_set_mem_owner_);
1065 if (first_result.query_mem_desc_.getQueryDescriptionType() ==
1067 const auto total_entry_count =
1071 [](
const size_t init,
const ResultSet* rs) {
1072 return init + rs->query_mem_desc_.getEntryCount();
1074 CHECK(total_entry_count);
1077 rs_.reset(
new ResultSet(first_result.targets_,
1083 auto result_storage =
rs_->allocateStorage(first_result.target_init_vals_);
1084 rs_->initializeStorage();
1087 first_result.moveEntriesToBuffer<int32_t>(result_storage->getUnderlyingBuffer(),
1091 first_result.moveEntriesToBuffer<int64_t>(result_storage->getUnderlyingBuffer(),
1098 result_rs =
rs_.get();
1101 auto& serialized_varlen_buffer = result_sets.front()->serialized_varlen_buffer_;
1102 if (!serialized_varlen_buffer.empty()) {
1103 result->rewriteAggregateBufferOffsets(serialized_varlen_buffer.front());
1104 for (
auto result_it = result_sets.begin() + 1; result_it != result_sets.end();
1106 auto& result_serialized_varlen_buffer = (*result_it)->serialized_varlen_buffer_;
1107 CHECK_EQ(result_serialized_varlen_buffer.size(), size_t(1));
1108 serialized_varlen_buffer.emplace_back(
1109 std::move(result_serialized_varlen_buffer.front()));
1114 result_rs->getTargetInfos(),
1115 result_rs->getTargetInitVals(),
1117 auto reduction_code = reduction_jit.
codegen();
1119 for (
auto result_it = result_sets.begin() + 1; result_it != result_sets.end();
1121 if (!serialized_varlen_buffer.empty()) {
1122 result->reduce(*((*result_it)->storage_),
1123 serialized_varlen_buffer[ctr++],
1127 result->reduce(*((*result_it)->storage_), {}, reduction_code, executor_id);
1138 auto& result_storage = result_rs->storage_;
1139 result_storage->rewriteAggregateBufferOffsets(
1140 result_rs->serialized_varlen_buffer_.front());
1146 CHECK_EQ(slot_count + key_count, entry.size());
1147 auto this_buff =
reinterpret_cast<int64_t*
>(
buff_);
1152 for (
size_t i = 0; i < key_count; ++i) {
1153 this_buff[key_off + i] = entry[i];
1157 this_buff[first_slot_off + i] = entry[key_count + i];
1165 const auto key_bytes_with_padding =
1171 auto row_ptr =
buff_ + i * row_size;
1173 auto slot_ptr =
reinterpret_cast<int64_t*
>(row_ptr + key_bytes_with_padding);
1182 auto row_ptr =
buff_ + i * row_size;
1184 auto slot_ptr =
reinterpret_cast<int64_t*
>(row_ptr + key_bytes_with_padding);
1201 CHECK_EQ(slot_count + key_count, entry.size());
1202 auto this_buff =
reinterpret_cast<int64_t*
>(
buff_);
1204 for (
size_t i = 0; i < key_count; i++) {
1206 this_buff[key_offset] = entry[i];
1211 this_buff[slot_offset] = entry[key_count + i];
1217 auto this_buff =
reinterpret_cast<int64_t*
>(
buff_);
1219 for (
size_t key_idx = 0; key_idx < key_count; ++key_idx) {
1220 const auto first_key_off =
1226 for (
size_t target_idx = 0; target_idx <
target_init_vals_.size(); ++target_idx) {
1227 const auto first_val_off =
1238 size_t slot_off = 0;
1250 #define AGGREGATE_ONE_VALUE( \
1251 agg_kind__, val_ptr__, other_ptr__, chosen_bytes__, agg_info__) \
1253 const auto sql_type = get_compact_type(agg_info__); \
1254 if (sql_type.is_fp()) { \
1255 if (chosen_bytes__ == sizeof(float)) { \
1256 agg_##agg_kind__##_float(reinterpret_cast<int32_t*>(val_ptr__), \
1257 *reinterpret_cast<const float*>(other_ptr__)); \
1259 agg_##agg_kind__##_double(reinterpret_cast<int64_t*>(val_ptr__), \
1260 *reinterpret_cast<const double*>(other_ptr__)); \
1263 if (chosen_bytes__ == sizeof(int32_t)) { \
1264 auto val_ptr = reinterpret_cast<int32_t*>(val_ptr__); \
1265 auto other_ptr = reinterpret_cast<const int32_t*>(other_ptr__); \
1266 agg_##agg_kind__##_int32(val_ptr, *other_ptr); \
1268 auto val_ptr = reinterpret_cast<int64_t*>(val_ptr__); \
1269 auto other_ptr = reinterpret_cast<const int64_t*>(other_ptr__); \
1270 agg_##agg_kind__(val_ptr, *other_ptr); \
1275 #define AGGREGATE_ONE_NULLABLE_VALUE( \
1276 agg_kind__, val_ptr__, other_ptr__, init_val__, chosen_bytes__, agg_info__) \
1278 if (agg_info__.skip_null_val) { \
1279 const auto sql_type = get_compact_type(agg_info__); \
1280 if (sql_type.is_fp()) { \
1281 if (chosen_bytes__ == sizeof(float)) { \
1282 agg_##agg_kind__##_float_skip_val( \
1283 reinterpret_cast<int32_t*>(val_ptr__), \
1284 *reinterpret_cast<const float*>(other_ptr__), \
1285 *reinterpret_cast<const float*>(may_alias_ptr(&init_val__))); \
1287 agg_##agg_kind__##_double_skip_val( \
1288 reinterpret_cast<int64_t*>(val_ptr__), \
1289 *reinterpret_cast<const double*>(other_ptr__), \
1290 *reinterpret_cast<const double*>(may_alias_ptr(&init_val__))); \
1293 if (chosen_bytes__ == sizeof(int32_t)) { \
1294 int32_t* val_ptr = reinterpret_cast<int32_t*>(val_ptr__); \
1295 const int32_t* other_ptr = reinterpret_cast<const int32_t*>(other_ptr__); \
1296 const auto null_val = static_cast<int32_t>(init_val__); \
1297 agg_##agg_kind__##_int32_skip_val(val_ptr, *other_ptr, null_val); \
1299 int64_t* val_ptr = reinterpret_cast<int64_t*>(val_ptr__); \
1300 const int64_t* other_ptr = reinterpret_cast<const int64_t*>(other_ptr__); \
1301 const auto null_val = static_cast<int64_t>(init_val__); \
1302 agg_##agg_kind__##_skip_val(val_ptr, *other_ptr, null_val); \
1306 AGGREGATE_ONE_VALUE( \
1307 agg_kind__, val_ptr__, other_ptr__, chosen_bytes__, agg_info__); \
1311 #define AGGREGATE_ONE_COUNT(val_ptr__, other_ptr__, chosen_bytes__) \
1313 if (chosen_bytes__ == sizeof(int32_t)) { \
1314 auto val_ptr = reinterpret_cast<int32_t*>(val_ptr__); \
1315 auto other_ptr = reinterpret_cast<const int32_t*>(other_ptr__); \
1316 agg_sum_int32(val_ptr, *other_ptr); \
1318 auto val_ptr = reinterpret_cast<int64_t*>(val_ptr__); \
1319 auto other_ptr = reinterpret_cast<const int64_t*>(other_ptr__); \
1320 agg_sum(val_ptr, *other_ptr); \
1324 #define AGGREGATE_ONE_NULLABLE_COUNT( \
1325 val_ptr__, other_ptr__, init_val__, chosen_bytes__, agg_info__) \
1327 if (agg_info__.skip_null_val) { \
1328 const auto sql_type = get_compact_type(agg_info__); \
1329 if (sql_type.is_fp()) { \
1330 if (chosen_bytes__ == sizeof(float)) { \
1331 agg_sum_float_skip_val( \
1332 reinterpret_cast<int32_t*>(val_ptr__), \
1333 *reinterpret_cast<const float*>(other_ptr__), \
1334 *reinterpret_cast<const float*>(may_alias_ptr(&init_val__))); \
1336 agg_sum_double_skip_val( \
1337 reinterpret_cast<int64_t*>(val_ptr__), \
1338 *reinterpret_cast<const double*>(other_ptr__), \
1339 *reinterpret_cast<const double*>(may_alias_ptr(&init_val__))); \
1342 if (chosen_bytes__ == sizeof(int32_t)) { \
1343 auto val_ptr = reinterpret_cast<int32_t*>(val_ptr__); \
1344 auto other_ptr = reinterpret_cast<const int32_t*>(other_ptr__); \
1345 const auto null_val = static_cast<int32_t>(init_val__); \
1346 agg_sum_int32_skip_val(val_ptr, *other_ptr, null_val); \
1348 auto val_ptr = reinterpret_cast<int64_t*>(val_ptr__); \
1349 auto other_ptr = reinterpret_cast<const int64_t*>(other_ptr__); \
1350 const auto null_val = static_cast<int64_t>(init_val__); \
1351 agg_sum_skip_val(val_ptr, *other_ptr, null_val); \
1355 AGGREGATE_ONE_COUNT(val_ptr__, other_ptr__, chosen_bytes__); \
1360 #define AGGREGATE_ONE_VALUE_SMALL( \
1361 agg_kind__, val_ptr__, other_ptr__, chosen_bytes__, agg_info__) \
1363 if (chosen_bytes__ == sizeof(int16_t)) { \
1364 auto val_ptr = reinterpret_cast<int16_t*>(val_ptr__); \
1365 auto other_ptr = reinterpret_cast<const int16_t*>(other_ptr__); \
1366 agg_##agg_kind__##_int16(val_ptr, *other_ptr); \
1367 } else if (chosen_bytes__ == sizeof(int8_t)) { \
1368 auto val_ptr = reinterpret_cast<int8_t*>(val_ptr__); \
1369 auto other_ptr = reinterpret_cast<const int8_t*>(other_ptr__); \
1370 agg_##agg_kind__##_int8(val_ptr, *other_ptr); \
1377 #define AGGREGATE_ONE_NULLABLE_VALUE_SMALL( \
1378 agg_kind__, val_ptr__, other_ptr__, init_val__, chosen_bytes__, agg_info__) \
1380 if (agg_info__.skip_null_val) { \
1381 if (chosen_bytes__ == sizeof(int16_t)) { \
1382 int16_t* val_ptr = reinterpret_cast<int16_t*>(val_ptr__); \
1383 const int16_t* other_ptr = reinterpret_cast<const int16_t*>(other_ptr__); \
1384 const auto null_val = static_cast<int16_t>(init_val__); \
1385 agg_##agg_kind__##_int16_skip_val(val_ptr, *other_ptr, null_val); \
1386 } else if (chosen_bytes == sizeof(int8_t)) { \
1387 int8_t* val_ptr = reinterpret_cast<int8_t*>(val_ptr__); \
1388 const int8_t* other_ptr = reinterpret_cast<const int8_t*>(other_ptr__); \
1389 const auto null_val = static_cast<int8_t>(init_val__); \
1390 agg_##agg_kind__##_int8_skip_val(val_ptr, *other_ptr, null_val); \
1393 AGGREGATE_ONE_VALUE_SMALL( \
1394 agg_kind__, val_ptr__, other_ptr__, chosen_bytes__, agg_info__); \
1399 const bool float_argument_input,
1401 if (float_argument_input) {
1402 return sizeof(float);
1409 const size_t target_slot_idx,
1410 const size_t init_agg_val_idx,
1411 const int8_t* that_ptr1)
const {
1417 auto reduce = [&](
auto const& size_tag) {
1418 using CastTarget = std::decay_t<decltype(size_tag)>;
1419 const auto lhs_proj_col = *
reinterpret_cast<const CastTarget*
>(this_ptr1);
1420 const auto rhs_proj_col = *
reinterpret_cast<const CastTarget*
>(that_ptr1);
1421 if (rhs_proj_col == init_val) {
1423 }
else if (lhs_proj_col == init_val) {
1424 *
reinterpret_cast<CastTarget*
>(this_ptr1) = rhs_proj_col;
1425 }
else if (lhs_proj_col != rhs_proj_col) {
1426 throw std::runtime_error(
"Multiple distinct values encountered");
1430 switch (chosen_bytes) {
1451 LOG(
FATAL) <<
"Invalid slot width: " << chosen_bytes;
1458 const int8_t* that_ptr1,
1459 const int8_t* that_ptr2,
1461 const size_t target_logical_idx,
1462 const size_t target_slot_idx,
1463 const size_t init_agg_val_idx,
1465 const size_t first_slot_idx_for_target,
1466 const std::vector<std::string>& serialized_varlen_buffer)
const {
1480 this_ptr1, target_info, target_logical_idx, init_agg_val_idx, that_ptr1);
1487 CHECK_EQ(static_cast<size_t>(chosen_bytes),
sizeof(int64_t));
1505 sum, this_ptr1, that_ptr1, init_val, chosen_bytes, target_info);
1509 if (static_cast<size_t>(chosen_bytes) <=
sizeof(int16_t)) {
1511 min, this_ptr1, that_ptr1, init_val, chosen_bytes, target_info);
1514 min, this_ptr1, that_ptr1, init_val, chosen_bytes, target_info);
1519 if (static_cast<size_t>(chosen_bytes) <=
sizeof(int16_t)) {
1521 max, this_ptr1, that_ptr1, init_val, chosen_bytes, target_info);
1524 max, this_ptr1, that_ptr1, init_val, chosen_bytes, target_info);
1529 CHECK_EQ(static_cast<int8_t>(
sizeof(int64_t)), chosen_bytes);
1536 switch (chosen_bytes) {
1539 const auto rhs_proj_col = *
reinterpret_cast<const int8_t*
>(that_ptr1);
1540 if (rhs_proj_col != init_val) {
1541 *
reinterpret_cast<int8_t*
>(this_ptr1) = rhs_proj_col;
1547 const auto rhs_proj_col = *
reinterpret_cast<const int16_t*
>(that_ptr1);
1548 if (rhs_proj_col != init_val) {
1549 *
reinterpret_cast<int16_t*
>(this_ptr1) = rhs_proj_col;
1556 const auto rhs_proj_col = *
reinterpret_cast<const int32_t*
>(that_ptr1);
1557 if (rhs_proj_col != init_val) {
1558 *
reinterpret_cast<int32_t*
>(this_ptr1) = rhs_proj_col;
1563 auto rhs_proj_col = *
reinterpret_cast<const int64_t*
>(that_ptr1);
1565 !serialized_varlen_buffer.empty()) {
1566 size_t length_to_elems{0};
1569 length_to_elems = target_slot_idx == first_slot_idx_for_target ? 1 : 4;
1575 CHECK_LT(static_cast<size_t>(rhs_proj_col), serialized_varlen_buffer.size());
1576 const auto& varlen_bytes_str = serialized_varlen_buffer[rhs_proj_col];
1577 const auto str_ptr =
reinterpret_cast<const int8_t*
>(varlen_bytes_str.c_str());
1578 *
reinterpret_cast<int64_t*
>(this_ptr1) =
1579 reinterpret_cast<const int64_t>(str_ptr);
1580 *
reinterpret_cast<int64_t*
>(this_ptr2) =
1581 static_cast<int64_t>(varlen_bytes_str.size() / length_to_elems);
1583 if (rhs_proj_col != init_val) {
1584 *
reinterpret_cast<int64_t*
>(this_ptr1) = rhs_proj_col;
1587 CHECK(this_ptr2 && that_ptr2);
1588 *
reinterpret_cast<int64_t*
>(this_ptr2) =
1589 *reinterpret_cast<const int64_t*>(that_ptr2);
1596 LOG(
FATAL) <<
"Invalid slot width: " << chosen_bytes;
1602 const int8_t* that_ptr1,
1603 const size_t target_logical_idx,
1608 CHECK(incoming) <<
"this_ptr1=" << (
void*)this_ptr1
1609 <<
", that_ptr1=" << (
void const*)that_ptr1
1610 <<
", target_logical_idx=" << target_logical_idx;
1611 if (incoming->centroids().capacity()) {
1613 CHECK(accumulator) <<
"this_ptr1=" << (
void*)this_ptr1
1614 <<
", that_ptr1=" << (
void const*)that_ptr1
1615 <<
", target_logical_idx=" << target_logical_idx;
1616 accumulator->allocate();
1617 accumulator->mergeTDigest(*incoming);
1622 const int8_t* that_ptr1,
1623 const size_t target_logical_idx,
1626 const auto& old_count_distinct_desc =
1629 const auto& new_count_distinct_desc =
1631 CHECK(old_count_distinct_desc.impl_type_ == new_count_distinct_desc.impl_type_);
1632 CHECK(this_ptr1 && that_ptr1);
1633 auto old_set_ptr =
reinterpret_cast<const int64_t*
>(this_ptr1);
1634 auto new_set_ptr =
reinterpret_cast<const int64_t*
>(that_ptr1);
1636 *new_set_ptr, *old_set_ptr, new_count_distinct_desc, old_count_distinct_desc);
1640 const int8_t warp_count,
1641 const bool is_columnar,
1642 const bool replace_bitmap_ptr_with_bitmap_sz,
1643 std::vector<int64_t>& agg_vals,
1645 const std::vector<TargetInfo>& targets,
1646 const std::vector<int64_t>& agg_init_vals) {
1647 const size_t agg_col_count{agg_vals.size()};
1648 const auto row_size = query_mem_desc.
getRowSize();
1650 CHECK_GE(agg_col_count, targets.size());
1653 std::vector<int64_t> partial_agg_vals(agg_col_count, 0);
1654 bool discard_row =
true;
1655 for (int8_t warp_idx = 0; warp_idx < warp_count; ++warp_idx) {
1656 bool discard_partial_result =
true;
1657 for (
size_t target_idx = 0, agg_col_idx = 0;
1658 target_idx < targets.size() && agg_col_idx < agg_col_count;
1659 ++target_idx, ++agg_col_idx) {
1660 const auto& agg_info = targets[target_idx];
1662 const auto chosen_bytes = float_argument_input
1667 partial_agg_vals[agg_col_idx] = partial_bin_val;
1670 CHECK(agg_info.is_agg &&
1675 if (replace_bitmap_ptr_with_bitmap_sz) {
1676 partial_agg_vals[agg_col_idx] = partial_bin_val;
1679 if (
kAVG == agg_info.agg_kind) {
1680 CHECK(agg_info.is_agg && !agg_info.is_distinct);
1682 partial_bin_val = partial_agg_vals[agg_col_idx] =
1688 CHECK(agg_info.is_agg);
1689 discard_partial_result =
false;
1692 row_ptr += row_size;
1693 if (discard_partial_result) {
1696 discard_row =
false;
1697 for (
size_t target_idx = 0, agg_col_idx = 0;
1698 target_idx < targets.size() && agg_col_idx < agg_col_count;
1699 ++target_idx, ++agg_col_idx) {
1700 auto partial_bin_val = partial_agg_vals[agg_col_idx];
1701 const auto& agg_info = targets[target_idx];
1703 const auto chosen_bytes = float_argument_input
1707 if (agg_info.is_agg && agg_info.agg_kind !=
kSAMPLE) {
1709 switch (agg_info.agg_kind) {
1714 reinterpret_cast<int8_t*>(&agg_vals[agg_col_idx]),
1715 reinterpret_cast<int8_t*>(&partial_agg_vals[agg_col_idx]),
1716 agg_init_vals[agg_col_idx],
1724 reinterpret_cast<int8_t*>(&agg_vals[agg_col_idx + 1]),
1725 reinterpret_cast<int8_t*>(&partial_agg_vals[agg_col_idx + 1]),
1732 reinterpret_cast<int8_t*>(&agg_vals[agg_col_idx]),
1733 reinterpret_cast<int8_t*>(&partial_agg_vals[agg_col_idx]),
1734 agg_init_vals[agg_col_idx],
1739 if (static_cast<size_t>(chosen_bytes) <=
sizeof(int16_t)) {
1742 reinterpret_cast<int8_t*>(&agg_vals[agg_col_idx]),
1743 reinterpret_cast<int8_t*>(&partial_agg_vals[agg_col_idx]),
1744 agg_init_vals[agg_col_idx],
1750 reinterpret_cast<int8_t*>(&agg_vals[agg_col_idx]),
1751 reinterpret_cast<int8_t*>(&partial_agg_vals[agg_col_idx]),
1752 agg_init_vals[agg_col_idx],
1758 if (static_cast<size_t>(chosen_bytes) <=
sizeof(int16_t)) {
1761 reinterpret_cast<int8_t*>(&agg_vals[agg_col_idx]),
1762 reinterpret_cast<int8_t*>(&partial_agg_vals[agg_col_idx]),
1763 agg_init_vals[agg_col_idx],
1769 reinterpret_cast<int8_t*>(&agg_vals[agg_col_idx]),
1770 reinterpret_cast<int8_t*>(&partial_agg_vals[agg_col_idx]),
1771 agg_init_vals[agg_col_idx],
1780 }
catch (std::runtime_error& e) {
1784 if (chosen_type.is_integer() || chosen_type.is_decimal()) {
1785 switch (chosen_bytes) {
1789 int32_t ret = *
reinterpret_cast<const int32_t*
>(&agg_vals[agg_col_idx]);
1790 if (!(shared::is_any<kCOUNT, kCOUNT_IF>(agg_info.agg_kind) &&
1791 ret != agg_init_vals[agg_col_idx])) {
1792 agg_vals[agg_col_idx] =
static_cast<int64_t
>(ret);
1800 if (
kAVG == agg_info.agg_kind) {
1804 if (agg_info.agg_kind ==
kSAMPLE) {
1805 CHECK(!agg_info.sql_type.is_varlen())
1806 <<
"Interleaved bins reduction not supported for variable length "
1810 if (agg_vals[agg_col_idx]) {
1811 if (agg_info.agg_kind ==
kSAMPLE) {
1814 CHECK_EQ(agg_vals[agg_col_idx], partial_bin_val);
1816 agg_vals[agg_col_idx] = partial_bin_val;
GroupValueInfo get_group_value_reduction(int64_t *groups_buffer, const uint32_t groups_buffer_entry_count, const int64_t *key, const uint32_t key_count, const size_t key_width, const QueryMemoryDescriptor &query_mem_desc, const int64_t *that_buff_i64, const size_t that_entry_idx, const size_t that_entry_count, const uint32_t row_size_quad)
size_t slot_offset_rowwise(const size_t entry_idx, const size_t slot_idx, const size_t key_count, const size_t slot_count)
size_t getSlotCount() const
void count_distinct_set_union(const int64_t new_set_handle, const int64_t old_set_handle, const CountDistinctDescriptor &new_count_distinct_desc, const CountDistinctDescriptor &old_count_distinct_desc)
size_t getEntryCount() const
__device__ bool dynamic_watchdog()
void moveOneEntryToBuffer(const size_t entry_index, int64_t *new_buff_i64, const size_t new_entry_count, const size_t key_count, const size_t row_qw_count, const int64_t *src_buff, const size_t key_byte_width) const
bool isEmptyEntry(const size_t entry_idx, const int8_t *buff) const
static const int32_t ERR_INTERRUPTED
const std::vector< TargetInfo > targets_
ALWAYS_INLINE void reduceOneSlot(int8_t *this_ptr1, int8_t *this_ptr2, const int8_t *that_ptr1, const int8_t *that_ptr2, const TargetInfo &target_info, const size_t target_logical_idx, const size_t target_slot_idx, const size_t init_agg_val_idx, const ResultSetStorage &that, const size_t first_slot_idx_for_target, const std::vector< std::string > &serialized_varlen_buffer) const
std::vector< int64_t > target_init_vals_
void initializeColWise() const
size_t slot_offset_colwise(const size_t entry_idx, const size_t slot_idx, const size_t key_count, const size_t entry_count)
void reduceOneEntryBaseline(int8_t *this_buff, const int8_t *that_buff, const size_t i, const size_t that_entry_count, const ResultSetStorage &that) const
int64_t getTargetGroupbyIndex(const size_t target_idx) const
bool isEmptyEntryColumnar(const size_t entry_idx, const int8_t *buff) const
int64_t get_component(const int8_t *group_by_buffer, const size_t comp_sz, const size_t index=0)
std::unique_ptr< Function > ir_reduce_loop
bool isLogicalSizedColumnsAllowed() const
T advance_to_next_columnar_target_buff(T target_ptr, const QueryMemoryDescriptor &query_mem_desc, const size_t target_slot_idx)
std::shared_ptr< ResultSet > rs_
GroupValueInfo get_matching_group_value_reduction(int64_t *groups_buffer, const uint32_t h, const T *key, const uint32_t key_count, const QueryMemoryDescriptor &query_mem_desc, const int64_t *that_buff_i64, const size_t that_entry_idx, const size_t that_entry_count, const uint32_t row_size_quad)
ALWAYS_INLINE void check_watchdog_with_seed(const size_t sample_seed)
void initializeStorage() const
bool hasKeylessHash() const
void fill_slots(int64_t *dst_entry, const size_t dst_entry_count, const int64_t *src_buff, const size_t src_entry_idx, const size_t src_entry_count, const QueryMemoryDescriptor &query_mem_desc)
void initializeRowWise() const
void reduceOneApproxQuantileSlot(int8_t *this_ptr1, const int8_t *that_ptr1, const size_t target_logical_idx, const ResultSetStorage &that) const
void initializeBaselineValueSlots(int64_t *this_entry_slots) const
GroupValueInfo get_group_value_columnar_reduction(int64_t *groups_buffer, const uint32_t groups_buffer_entry_count, const int64_t *key, const uint32_t key_qw_count)
size_t get_slot_off_quad(const QueryMemoryDescriptor &query_mem_desc)
size_t getEffectiveKeyWidth() const
ALWAYS_INLINE void fill_empty_key_32(int32_t *key_ptr_i32, const size_t key_count)
void reduceOneSlotBaseline(int64_t *this_buff, const size_t this_slot, const int64_t *that_buff, const size_t that_entry_count, const size_t that_slot, const TargetInfo &target_info, const size_t target_logical_idx, const size_t target_slot_idx, const size_t init_agg_val_idx, const ResultSetStorage &that) const
bool g_enable_dynamic_watchdog
bool takes_float_argument(const TargetInfo &target_info)
bool g_enable_non_kernel_time_query_interrupt
std::vector< int64_t > make_key(const int64_t *buff, const size_t entry_count, const size_t key_count)
T advance_target_ptr_row_wise(T target_ptr, const TargetInfo &target_info, const size_t slot_idx, const QueryMemoryDescriptor &query_mem_desc, const bool separate_varlen_storage)
void rewriteVarlenAggregates(ResultSet *)
size_t getRowSize() const
size_t getColOnlyOffInBytes(const size_t col_idx) const
static std::shared_ptr< Executor > getExecutor(const ExecutorId id, const std::string &debug_dir="", const std::string &debug_file="", const SystemParameters &system_parameters=SystemParameters())
const SQLTypeInfo get_compact_type(const TargetInfo &target)
int8_t get_width_for_slot(const size_t target_slot_idx, const bool float_argument_input, const QueryMemoryDescriptor &query_mem_desc)
int8_t groupColWidth(const size_t key_idx) const
void reduceOneEntrySlotsBaseline(int64_t *this_entry_slots, const int64_t *that_buff, const size_t that_entry_idx, const size_t that_entry_count, const ResultSetStorage &that) const
future< Result > async(Fn &&fn, Args &&...args)
size_t advance_slot(const size_t j, const TargetInfo &target_info, const bool separate_varlen_storage)
void copyKeyColWise(const size_t entry_idx, int8_t *this_buff, const int8_t *that_buff) const
int64_t count_distinct_set_size(const int64_t set_handle, const CountDistinctDescriptor &count_distinct_desc)
void init(LogOptions const &log_opts)
void reduceOneCountDistinctSlot(int8_t *this_ptr1, const int8_t *that_ptr1, const size_t target_logical_idx, const ResultSetStorage &that) const
size_t getGroupbyColCount() const
void moveEntriesToBuffer(int8_t *new_buff, const size_t new_entry_count) const
void fill_empty_key(void *key_ptr, const size_t key_count, const size_t key_width)
#define store_cst(ptr, val)
size_t targetGroupbyIndicesSize() const
ALWAYS_INLINE void check_watchdog()
std::pair< int64_t *, bool > GroupValueInfo
DEVICE auto accumulate(ARGS &&...args)
std::shared_ptr< ResultSet > getOwnResultSet()
void fillOneEntryColWise(const std::vector< int64_t > &entry)
bool is_distinct_target(const TargetInfo &target_info)
static EvalValue MakeEvalValue(const T &val)
GroupValueInfo get_matching_group_value_columnar_reduction(int64_t *groups_buffer, const uint32_t h, const int64_t *key, const uint32_t key_qw_count, const size_t entry_count)
std::string toString(const ExecutorDeviceType &device_type)
const int8_t getPaddedSlotWidthBytes(const size_t slot_idx) const
static const int32_t ERR_SINGLE_VALUE_FOUND_MULTIPLE_VALUES
RUNTIME_EXPORT NEVER_INLINE DEVICE int64_t * get_group_value(int64_t *groups_buffer, const uint32_t groups_buffer_entry_count, const int64_t *key, const uint32_t key_count, const uint32_t key_width, const uint32_t row_size_quad)
void reduce(const ResultSetStorage &that, const std::vector< std::string > &serialized_varlen_buffer, const ReductionCode &reduction_code, const size_t executor_id) const
T row_ptr_rowwise(T buff, const QueryMemoryDescriptor &query_mem_desc, const size_t entry_idx)
#define mapd_cas(address, compare, val)
size_t getCountDistinctDescriptorsSize() const
QueryDescriptionType getQueryDescriptionType() const
#define cas_cst(ptr, expected, desired)
size_t key_offset_colwise(const size_t entry_idx, const size_t key_idx, const size_t entry_count)
virtual ReductionCode codegen() const
const CountDistinctDescriptor & getCountDistinctDescriptor(const size_t idx) const
void reduceEntriesNoCollisionsColWise(int8_t *this_buff, const int8_t *that_buff, const ResultSetStorage &that, const size_t start_index, const size_t end_index, const std::vector< std::string > &serialized_varlen_buffer, const size_t executor_id) const
#define AGGREGATE_ONE_NULLABLE_VALUE(agg_kind__, val_ptr__, other_ptr__, init_val__, chosen_bytes__, agg_info__)
size_t get_row_bytes(const QueryMemoryDescriptor &query_mem_desc)
ALWAYS_INLINE void reduceOneSlotSingleValue(int8_t *this_ptr1, const TargetInfo &target_info, const size_t target_slot_idx, const size_t init_agg_val_idx, const int8_t *that_ptr1) const
#define AGGREGATE_ONE_COUNT(val_ptr__, other_ptr__, chosen_bytes__)
#define AGGREGATE_ONE_NULLABLE_COUNT(val_ptr__, other_ptr__, init_val__, chosen_bytes__, agg_info__)
size_t key_offset_rowwise(const size_t entry_idx, const size_t key_count, const size_t slot_count)
bool use_multithreaded_reduction(const size_t entry_count)
bool didOutputColumnar() const
RUNTIME_EXPORT ALWAYS_INLINE DEVICE uint32_t key_hash(const int64_t *key, const uint32_t key_count, const uint32_t key_byte_width)
const ColSlotContext & getColSlotContext() const
static EvalValue run(const size_t execution_id, const Function *function, const std::vector< EvalValue > &inputs)
void fillOneEntryRowWise(const std::vector< int64_t > &entry)
Basic constructors and methods of the row set interface.
size_t get_row_qw_count(const QueryMemoryDescriptor &query_mem_desc)
#define AGGREGATE_ONE_NULLABLE_VALUE_SMALL(agg_kind__, val_ptr__, other_ptr__, init_val__, chosen_bytes__, agg_info__)
void rewriteAggregateBufferOffsets(const std::vector< std::string > &serialized_varlen_buffer) const
ALWAYS_INLINE void fill_empty_key_64(int64_t *key_ptr_i64, const size_t key_count)
void run_reduction_code(const size_t executor_id, const ReductionCode &reduction_code, int8_t *this_buff, const int8_t *that_buff, const int32_t start_entry_index, const int32_t end_entry_index, const int32_t that_entry_count, const void *this_qmd, const void *that_qmd, const void *serialized_varlen_buffer)
SQLTypeInfo get_elem_type() const
size_t getBufferColSlotCount() const
T get_cols_ptr(T buff, const QueryMemoryDescriptor &query_mem_desc)
static bool reduceSingleRow(const int8_t *row_ptr, const int8_t warp_count, const bool is_columnar, const bool replace_bitmap_ptr_with_bitmap_sz, std::vector< int64_t > &agg_vals, const QueryMemoryDescriptor &query_mem_desc, const std::vector< TargetInfo > &targets, const std::vector< int64_t > &agg_init_vals)
RUNTIME_EXPORT NEVER_INLINE DEVICE int64_t * get_group_value_columnar(int64_t *groups_buffer, const uint32_t groups_buffer_entry_count, const int64_t *key, const uint32_t key_qw_count)
size_t get_key_bytes_rowwise(const QueryMemoryDescriptor &query_mem_desc)
FORCE_INLINE HOST DEVICE T align_to_int64(T addr)
ResultSet * reduce(std::vector< ResultSet * > &, const size_t executor_id)
QueryMemoryDescriptor query_mem_desc_
int32_t getTargetIdxForKey() const
size_t getPrependedGroupColOffInBytes(const size_t group_idx) const