20 #include "../Fragmenter/Fragmenter.h"
22 #include <tbb/parallel_for.h>
23 #include <tbb/task_arena.h>
39 return table_info_copy;
45 const std::vector<const TableDescriptor*>& shard_tables) {
46 size_t total_number_of_tuples{0};
49 CHECK(shard_table->fragmenter);
50 const auto& shard_metainfo = shard_table->fragmenter->getFragmentsForQuery();
51 total_number_of_tuples += shard_metainfo.getPhysicalNumTuples();
53 shard_metainfo.fragments.size());
55 shard_metainfo.fragments.begin(),
56 shard_metainfo.fragments.end());
59 return table_info_all_shards;
63 const auto it =
cache_.find(table_id);
65 const auto& table_info = it->second;
70 const auto td =
cat->getMetadataForTable(table_id);
72 const auto shard_tables =
cat->getPhysicalTablesDescriptors(td);
92 std::vector<Fragmenter_Namespace::FragmentInfo>
result;
95 auto& fragment = result.front();
96 fragment.fragmentId = 0;
97 fragment.deviceIds.resize(3);
98 fragment.resultSet = rows.get();
99 fragment.resultSetMutex.reset(
new std::mutex());
107 const std::vector<InputDescriptor>& input_descs,
108 Executor* executor) {
109 const auto temporary_tables = executor->getTemporaryTables();
110 const auto cat = executor->getCatalog();
112 std::unordered_map<int, size_t> info_cache;
113 for (
const auto& input_desc : input_descs) {
114 const auto table_id = input_desc.getTableId();
115 const auto cached_index_it = info_cache.find(table_id);
116 if (cached_index_it != info_cache.end()) {
117 CHECK_LT(cached_index_it->second, table_infos.size());
118 table_infos.push_back(
119 {table_id,
copy_table_info(table_infos[cached_index_it->second].info)});
124 CHECK(temporary_tables);
125 const auto it = temporary_tables->find(table_id);
127 <<
"Failed to find previous query result for node " << -table_id;
131 table_infos.push_back({table_id, executor->getTableInfo(table_id)});
133 CHECK(!table_infos.empty());
134 info_cache.insert(std::make_pair(table_id, table_infos.size() - 1));
140 template <
typename T>
142 std::shared_ptr<ChunkMetadata>& chunk_metadata,
145 const size_t row_count = chunk_metadata->numElements;
146 T min_val{std::numeric_limits<T>::max()};
147 T max_val{std::numeric_limits<T>::lowest()};
148 bool has_nulls{
false};
149 constexpr
size_t parallel_stats_compute_threshold = 20000UL;
150 if (row_count < parallel_stats_compute_threshold) {
151 for (
size_t row_idx = 0; row_idx < row_count; ++row_idx) {
152 const T cell_val = col_buffer[row_idx];
153 if (cell_val == null_val) {
157 if (cell_val < min_val) {
160 if (cell_val > max_val) {
165 const size_t max_thread_count = std::thread::hardware_concurrency();
167 const size_t min_grain_size = max_inputs_per_thread / 2;
168 const size_t num_threads =
169 std::min(max_thread_count,
170 ((row_count + max_inputs_per_thread - 1) / max_inputs_per_thread));
172 std::vector<T> threads_local_mins(num_threads, std::numeric_limits<T>::max());
173 std::vector<T> threads_local_maxes(num_threads, std::numeric_limits<T>::lowest());
174 std::vector<bool> threads_local_has_nulls(num_threads,
false);
175 tbb::task_arena limited_arena(num_threads);
177 limited_arena.execute([&] {
179 tbb::blocked_range<size_t>(0, row_count, min_grain_size),
180 [&](
const tbb::blocked_range<size_t>& r) {
181 const size_t start_idx = r.begin();
182 const size_t end_idx = r.end();
183 T local_min_val = std::numeric_limits<T>::max();
184 T local_max_val = std::numeric_limits<T>::lowest();
185 bool local_has_nulls =
false;
186 for (
size_t row_idx = start_idx; row_idx < end_idx; ++row_idx) {
187 const T cell_val = col_buffer[row_idx];
188 if (cell_val == null_val) {
189 local_has_nulls =
true;
192 if (cell_val < local_min_val) {
193 local_min_val = cell_val;
195 if (cell_val > local_max_val) {
196 local_max_val = cell_val;
199 size_t thread_idx = tbb::this_task_arena::current_thread_index();
200 if (local_min_val < threads_local_mins[thread_idx]) {
201 threads_local_mins[thread_idx] = local_min_val;
203 if (local_max_val > threads_local_maxes[thread_idx]) {
204 threads_local_maxes[thread_idx] = local_max_val;
206 if (local_has_nulls) {
207 threads_local_has_nulls[thread_idx] =
true;
210 tbb::simple_partitioner());
213 for (
size_t thread_idx = 0; thread_idx < num_threads; ++thread_idx) {
214 if (threads_local_mins[thread_idx] < min_val) {
215 min_val = threads_local_mins[thread_idx];
217 if (threads_local_maxes[thread_idx] > max_val) {
218 max_val = threads_local_maxes[thread_idx];
220 has_nulls |= threads_local_has_nulls[thread_idx];
223 chunk_metadata->fillChunkStats(min_val, max_val, has_nulls);
227 CHECK(rows->getQueryMemDesc().getQueryDescriptionType() ==
229 CHECK(rows->didOutputColumnar());
230 CHECK(!(rows->areAnyColumnsLazyFetched()));
231 const size_t col_count = rows->colCount();
232 const auto row_count = rows->entryCount();
236 for (
size_t col_idx = 0; col_idx < col_count; ++col_idx) {
237 const int8_t* columnar_buffer =
const_cast<int8_t*
>(rows->getColumnarBuffer(col_idx));
238 const auto col_sql_type_info = rows->getColType(col_idx);
239 const auto col_type = col_sql_type_info.get_type();
240 if (col_type !=
kTEXT) {
244 CHECK_EQ(col_sql_type_info.get_size(),
sizeof(int32_t));
246 std::shared_ptr<ChunkMetadata> chunk_metadata = std::make_shared<ChunkMetadata>();
247 chunk_metadata->sqlType = col_sql_type_info;
248 chunk_metadata->numBytes = row_count * col_sql_type_info.get_size();
249 chunk_metadata->numElements = row_count;
251 switch (col_sql_type_info.get_type()) {
262 reinterpret_cast<const int16_t*>(columnar_buffer),
268 reinterpret_cast<const int32_t*>(columnar_buffer),
275 reinterpret_cast<const int64_t*>(columnar_buffer),
283 reinterpret_cast<const float*>(columnar_buffer),
289 reinterpret_cast<const double*>(columnar_buffer),
295 reinterpret_cast<const int32_t*>(columnar_buffer),
301 chunk_metadata_map.emplace(col_idx, chunk_metadata);
303 return chunk_metadata_map;
310 if (rows->definitelyHasNoRows()) {
312 std::vector<std::unique_ptr<Encoder>> decoders;
313 for (
size_t i = 0; i < rows->colCount(); ++i) {
316 metadata_map.emplace(i, decoders.back()->getMetadata(rows->getColType(i)));
322 std::vector<std::vector<std::unique_ptr<Encoder>>> dummy_encoders;
323 const size_t worker_count =
325 for (
size_t worker_idx = 0; worker_idx < worker_count; ++worker_idx) {
326 dummy_encoders.emplace_back();
327 for (
size_t i = 0; i < rows->colCount(); ++i) {
328 const auto& col_ti = rows->getColType(i);
333 if (rows->getQueryMemDesc().getQueryDescriptionType() ==
338 const auto do_work = [rows](
const std::vector<TargetValue>& crt_row,
339 std::vector<std::unique_ptr<Encoder>>& dummy_encoders) {
340 for (
size_t i = 0; i < rows->colCount(); ++i) {
341 const auto& col_ti = rows->getColType(i);
342 const auto& col_val = crt_row[i];
343 const auto scalar_col_val = boost::get<ScalarTargetValue>(&col_val);
344 CHECK(scalar_col_val);
346 const auto i64_p = boost::get<int64_t>(scalar_col_val);
349 }
else if (col_ti.is_fp()) {
350 switch (col_ti.get_type()) {
352 const auto float_p = boost::get<float>(scalar_col_val);
354 dummy_encoders[i]->updateStats(*float_p,
359 const auto double_p = boost::get<double>(scalar_col_val);
361 dummy_encoders[i]->updateStats(*double_p,
369 throw std::runtime_error(col_ti.get_type_name() +
370 " is not supported in temporary table.");
376 std::vector<std::future<void>> compute_stats_threads;
377 const auto entry_count = rows->entryCount();
380 stride = (entry_count + worker_count - 1) / worker_count;
381 i < worker_count && start_entry < entry_count;
382 ++i, start_entry += stride) {
383 const auto end_entry = std::min(start_entry + stride, entry_count);
386 [rows, &do_work, &dummy_encoders](
387 const size_t start,
const size_t end,
const size_t worker_idx) {
388 for (
size_t i = start; i < end; ++i) {
389 const auto crt_row = rows->getRowAtNoTranslations(i);
390 if (!crt_row.empty()) {
391 do_work(crt_row, dummy_encoders[worker_idx]);
399 for (
auto& child : compute_stats_threads) {
402 for (
auto& child : compute_stats_threads) {
407 auto crt_row = rows->getNextRow(
false,
false);
408 if (crt_row.empty()) {
411 do_work(crt_row, dummy_encoders[0]);
415 for (
size_t worker_idx = 1; worker_idx < worker_count; ++worker_idx) {
416 CHECK_LT(worker_idx, dummy_encoders.size());
417 const auto& worker_encoders = dummy_encoders[worker_idx];
418 for (
size_t i = 0; i < rows->colCount(); ++i) {
419 dummy_encoders[0][i]->reduceStats(*worker_encoders[i]);
422 for (
size_t i = 0; i < rows->colCount(); ++i) {
424 metadata_map.emplace(i, dummy_encoders[0][i]->getMetadata(rows->getColType(i)));
431 const auto temporary_tables = executor->getTemporaryTables();
432 CHECK(temporary_tables);
433 auto it = temporary_tables->find(table_id);
434 if (it != temporary_tables->end()) {
438 const auto table_info = executor->getTableInfo(table_id);
439 return table_info.fragments.size();
444 const std::vector<InputDescriptor>& input_descs,
445 Executor* executor) {
446 std::vector<InputTableInfo> table_infos;
452 Executor* executor) {
454 std::vector<InputTableInfo> table_infos;
461 bool need_to_compute_metadata =
true;
469 if (enable_chunk_metadata_cache) {
470 std::optional<ChunkMetadataMap> cached =
471 executor->getRecultSetRecyclerHolder().getCachedChunkMetadata(
475 need_to_compute_metadata =
false;
478 if (need_to_compute_metadata) {
481 executor->getRecultSetRecyclerHolder().putChunkMetadataToCache(
495 for (
const auto& [column_id, chunk_metadata] : chunkMetadataMap) {
496 metadata_map[column_id] = std::make_shared<ChunkMetadata>(*chunk_metadata);
502 std::unique_ptr<std::lock_guard<std::mutex>> lock;
503 if (resultSetMutex) {
504 lock.reset(
new std::lock_guard<std::mutex>(*resultSetMutex));
506 CHECK_EQ(!!resultSet, !!resultSetMutex);
507 if (resultSet && !synthesizedNumTuplesIsValid) {
508 numTuples = resultSet->rowCount();
509 synthesizedNumTuplesIsValid =
true;
515 if (!fragments.empty() && fragments.front().resultSet) {
516 return fragments.front().getNumTuples();
522 if (!fragments.empty() && fragments.front().resultSet) {
523 return fragments.front().resultSet->entryCount();
529 if (!fragments.empty() && fragments.front().resultSet) {
530 return fragments.front().resultSet->entryCount();
532 size_t fragment_num_tupples_upper_bound = 0;
533 for (
const auto& fragment : fragments) {
534 fragment_num_tupples_upper_bound =
535 std::max(fragment.getNumTuples(), fragment_num_tupples_upper_bound);
537 return fragment_num_tupples_upper_bound;
size_t getNumTuples() const
ChunkMetadataMap getChunkMetadataMapPhysicalCopy() const
static Encoder * Create(Data_Namespace::AbstractBuffer *buffer, const SQLTypeInfo sqlType)
std::vector< InputDescriptor > input_descs
std::shared_ptr< ResultSet > ResultSetPtr
std::vector< FragmentInfo > fragments
std::vector< int > chunkKeyPrefix
bool g_enable_data_recycler
const size_t max_inputs_per_thread
double inline_fp_null_val(const SQL_TYPE_INFO &ti)
#define LOG_IF(severity, condition)
bool g_use_chunk_metadata_cache
static std::shared_ptr< Executor > getExecutor(const ExecutorId id, const std::string &debug_dir="", const std::string &debug_file="", const SystemParameters &system_parameters=SystemParameters())
ChunkMetadataMap chunkMetadataMap
bool use_parallel_algorithms(const ResultSet &rows)
size_t getPhysicalNumTuples() const
future< Result > async(Fn &&fn, Args &&...args)
size_t getNumTuples() const
#define INJECT_TIMER(DESC)
size_t getFragmentNumTuplesUpperBound() const
const ChunkMetadataMap & getChunkMetadataMap() const
HOST DEVICE EncodingType get_compression() const
constexpr float inline_fp_null_value< float >()
constexpr double inline_fp_null_value< double >()
void parallel_for(const blocked_range< Int > &range, const Body &body, const Partitioner &p=Partitioner())
bool g_enable_filter_push_down
size_t getNumTuplesUpperBound() const
#define DEBUG_TIMER(name)
void setPhysicalNumTuples(const size_t physNumTuples)
int64_t inline_int_null_val(const SQL_TYPE_INFO &ti)
int64_t inline_fixed_encoding_null_val(const SQL_TYPE_INFO &ti)
bool synthesizedMetadataIsValid
DEVICE void swap(ARGS &&...args)
static const ExecutorId UNITARY_EXECUTOR_ID